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ABSTRACT

Keywords. Adjacency matrix, Singularity, Spectrum of a graph, Spectral radius 

of a graph, Energy of a graph, Distance matrix, Distance spectral radius. 

AMSdass#Mons:05C05,05C20,05C50,15Al8.

Algebraic graph theory deals with the interrelation between Graph Theory 

and Algebra. Results of Algebra are used to solve problems in Graph Theory 

and vice-versa. Some of the important problems in algebraic graph theory are 

Matrix completion problems, minimum rank problems and problems in spectra of 

graphs. Spectral graph theory is the study of relations between the structure of a 

graph and the spectra of certain matrices associated to the graph. The associated 

matrices include the adjacency matrix, the distance matrix and their normalized 

forms. During our literature survey, we noticed some conspicuous gaps between 

known results on spectra of graphs. For example, the complete classification of 

all singular graphs was not known. We have tried to fill up certain gaps.

This thesis is the outcome of our study of the spectrum of the adjacency matrix 

and the distance matrix of a graph and its relation to the structure of the graph. 

It contains seven chapters. Overview of the thesis is as given below:

In the first chapter, we have tried to introduce Graph terminologies. This 

chapter is an introduction to our investigation and subsequent findings.

In the second chapter, we derive a sufficient condition for a graph to be sin

gular in terms of its graph properties. Moreover, we also derived some important 

results in this direction.

In the third chapter, we establish a necessary and sufficient condition for a 

graph G to be singular. Further, we characterize the nullity of a class of graphs.



In the fourth chapter, we have found the graph with maximal adjacency- 

spectral radius in a class of polycyclic graphs.

In the fifth chapter, we established ordering of graphs in terms of their ener

gies in the class of unicyclic graphs with independence number 2,3, respectively.

In the sixth chapter, we study the distance matrix of a graph and obtained 

a graph transformations which effects in the distance spectral radius for a spe

cial class of simple graphs. Also, we have determined the graphs with extremal 

distance spectral radius in the class of tree like graphs.

In the seventh chapter, we have proposed some open problems for future

investigation.
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Chapter 1

Introduction

Algebraic graph theory studies the interrelations between graph theory and al

gebra. Results of algebra are used to solve problems in graph theory and that 

of graph theory are used to solve problems in algebra. Some of the important 

problem in algebraic graph theory are Matrix completion problems, minimum 

rank problems and problems in spectra of graphs. Spectral Graph Theory is the 

study of relations between the structure of a graph and the spectra of certain 

matrices associated to the graph. The associated matrices include the adjacency 

matrix, the Laplacian matrix, the distance matrix and their normalized forms.

This thesis is the outcome of our study of the spectrum of the adjacency 

matrix and the distance matrix of a graph and its relation to the structure of the 

graph. During our literature survey, we noticed some conspicuous gaps between 

the known results on spectra of graphs. For example, the complete classification 

of all singular graphs was not known. This thesis is intended to fill up some of 

these gaps. We also try to answer certain recent questions on the distance matrix 

of a graph.
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Section 1.1 Graph terminologies

1.1 Graph terminologies

By a graph G we mean a finite set of vertices V(G) and a set of edges E(G) 

consisting of distinct, unordered pairs of vertices of V(G). We only consider simple 

undirected graph, i.e., graphs without loops and parallel edges. By |G| (i.e., the 

order of G) we mean the number of vertices in V(G), and d(v) denotes the degree 

of a vertex u in G. For two vertices u and v in G, duV denotes the distance (the 

length of a shortest path between u and v ) between u and v. We use the standard 

notations Cn, Kn, Pn and Sn to denote the cycle, the complete graph, the path 

and the star, respectively, on n vertices. For some n, the complement of Kn ( 

i.e., a graph having no edge ) is called an empty graph.

If Gi = (Vi,Ei) and G2 = (V2, E2) are two graphs on disjoint sets of m and n 

vertices, respectively, then their union is the graph GiUG2 = (V1UV2, E1UE2). A 

k-matching M in G is a disjoint union of k paths of length one. If ei, e2,..., ek are 

the edges (components) of a fc-matching M, then we write M = {e 1, e2,..., ek}. 

If the order of G is 2k, then a ^-matching of G is called a perfect matching of G.

A tree is a connected graph without a cycle, and a unicyclic graph is connected 

and has exactly one cycle. The cycle of a unicyclic graph G will always be denoted 

by G. Then, the number of vertices on C is called the girth of G. A tree ( resp. 

a unicyclic graph ) on n vertices has exactly n — 1 ( resp. n ) edges in it.

If S is a set of vertices and edges in a graph G, then by G — S we mean the 

graph obtained from G by deleting all the elements of S. It is understood that 

when a vertex is deleted, all edges incident with it are deleted as well, but when an 

edge is deleted, the vertices incident with it are not. If H is an induced subgraph
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Chapter 1 Introduction

of G and v is a vertex not in V(H), then by H + v we mean the subgraph induced 

by the vertices in V(H) U {u}.

We say that a graph 7 is attached at a vertex v of G to mean that a new 

graph is obtained by joining v and a vertex of 7 by an edge. With this notion, a 

unicyclic graph is seen as a graph obtained by attaching a finite number of trees 

at vertices of cycle. Moreover, if we attach any tree at any vertex of a unicyclic 

graph, the resultant graph will be unicyclic.

If G is a graph and v e V(G), then a component of G — v not containing any 

vertex of C is called a tree-branch of G at v. In particular, the tree-branches at a 

vertex on C are the trees attached to it. We say that a tree-branch is odd (even) 

if its order is odd ( even).

1.2 The adjacency matrix of a graph

If V{G) — {vi,v2,.... n„}, then the adjacency matrix of G, is defined to be 

A(G) = [oy]n, where

_ f 1, if vt and v3 are adjacent, 
~ \ 0, otherwise.

Clearly, A(G) is a non-negative real symmetric matrix.

Example 1.2.1. Consider the graph G\ of Figure 1.1. Then

3



Section 1.2 The adjacency matrix of a graph

V2 v3
G\

Figure 1.1:

A(G1)

0 1110 

10 10 0 

10 111 

10 10 1 

0 0 110

The characteristic polynomial of A(G),

P(A(G);x) = det(x/-A(G))

where I is the unit matrix of order n, is called the characteristic polynomial 

of G and is denoted by P(G; x). Since A(G) is a real symmetric matrix, all 

its eigenvalues are real and their algebraic multiplicities equal their geometric 

multiplicities. The spectrum of G is defined as

a(G) = (Ai(G),A2(G),---,An(G)),

where A*((?) are the eigenvalues of .A{G). Throughout this thesis we will be using 

that Aj(G) are written in descending order, that is,

Ai(G) > A2(G) > • ■ • > An(G).

T



Chapter 1 Introduction

The algebraic multiplicity of the eigenvalue 0 in er(G) is called the nullity of G 

and is denoted by 77(G). A graph G is said to be singular ( resp. nonsingular) if 

A(G) is singular ( resp. nonsingular). It is clear that G is singular if and only if G 

has a connected component which is singular. In particular, if G has an isolated 

vertex, then G is singular.

1.3 Singularity of a graph

The problem of characterizing a singular graph by its graph theoretic properties 

is a classical problem which was first posed by Collatz and Sinogowitz [13] almost 

fifty years back. The search for such a characterization was important in many 

disciplines of science which use spectra of graphs. For example, the occurrence 

of a zero eigenvalue in the spectrum of a graph ( especially a bipartite graph) 

associated to the structure of a molecule (like that of a hydrocarbon) indicates 

chemical instability of the molecule. Several partial answers to this central ques

tion are known for long, but a complete characterization of a general singular 

graph by its graph properties is still not known.

Theorem 1.3.1. [16] If v is a pendent vertex of a graph G and u is the vertex 

in G adjacent to v, then, 77(G) = r?(G — u — v).

Theorem 1.3.2. [17] Let G\ and G2 be bipartite graphs with r)(Gi) = 0. If G is 

obtained by joining an arbitrary vertex of G\ by an edge with an arbitrary vertex 

ofG-i, then 77(G) = r](Gf).

T



Section 1.4 Adjacency spectral radius

Theorem 1.3.3. [16] Ifg is the maximum number of mutually nonadjacent edges 

in a tree T having n vertices, then r}(T) = n — 2q. In particular, a tree is nonsin

gular if and only if it has a perfect matching.

Theorem 1.3.3 was generalized to the case of bipartite graphs not containing 

cycles of lengths 4s (s = 1,2,...) by Cvetkovic et al. [17] in 1972. However, 

there has not been much development on the problem in this line for last several 

decades, though the problem is still relevant. For some recent developments on 

singularity of graphs in very specific situations, see [52, 55, 49, 50].

In Chapter 2, we derive a sufficient condition for a graph to be singular in 

terms of its graph properties. Moreover, we also derived some important result 

in this direction.

In Chapter 3, we give a necessary and sufficient condition for graph to be 

singular. Using our results we completely determined the nullity of 0-graphs.

1.4 Adjacency spectral radius

The largest eigenvalue Ai((7) is known as the spectral radius of G. If G is con

nected, then A(G) is irreducible, and by the Perron-Frobenius theory, Xi(G) is 

simple and is afforded by a positive eigenvector, called the Perron vector.

The spectrum of a graph arises in a variety of applications in organic chemistry, 

where the energy levels of certain molecules (such as polycyclic hydrocarbons) are 

essentially the eigenvalues of the graph of the molecule [53]. It is well known that 

the spectrum of a graph does provide a wealth of information about the graph.



Chapter 1 Introduction

The spectral radius of a graph is an important invariant related to structure. The 

investigation of spectral radii of graphs is an important topic in graph spectra, 

and it is directly related with several parameters (the chromatic number, the 

independence number and the clique number, etc.). For results on the spectral 

radius of graphs one may refer [8, 9, 7, 11, 12, 15, 30, 31, 33, 61, 62, 64] and 

the references therein. The problem concerning graphs with maximal or minimal 

spectral radii of a given class of graphs has been studied extensively. The spectral 

radii of trees, unicyclic graphs and bicyelic graphs have been studied by many 

authors [11, 12, 31, 33, 61, 62]. Guo [30] determined the graphs with the largest 

spectral radii among all the unicyclic and bicyclic graphs with n vertices and k- 

pendant vertices respectively. The cacti are a class of polycyclic graphs in which 

any two of its cycles have at most one common vertex and the spectral radius of 

cactus has been studied by many authors [7, 61]. Motivated by these facts we 

will study the spectral radius of a class of polycyclic graphs in Chapter 4.

1.5 Energy of a graph

Spectra of graphs has important applications to fields like quantum chemistry. 

Though the graphs which are of interest in chemistry belong to a rather restricted 

class of graphs, this class is sufficiently large and many relevant nontrivial ques

tions can be posed which are even difficult in Graph Theory. The graphs that 

the chemists are interested in are all connected, planar and in most of the cases 

have restrictions on the vertex degrees. A cycle of length three seldom appear in 

chemical graphs, but cycles of higher length can do. Regular graphs also appear
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Section 1.5 Energy of a graph

very rarely.

In 1931, Hiickel [37] suggested a discrete linear model for the highly nonlinear 

analytic theory of energy of molecules in Quantum theory, whereby a connec

tion between the energy of hydrocarbon molecules and spectra of the associated 

graphs was observed. The theory is known as Hiickel Molecular Orbital (HMO) 

Theory in quantum Chemistry. In certain situations, the eigenvalues of the graph 

associated to the structure of a molecule can be interpreted as the energy levels of 

an electron in the molecule. In HMO, the connection between the so-called total 

n-electron energy is associated to the sum of the magnitudes of the eigenvalues of 

the associated molecular graph. A brief mathematical formulation of the theory 

can be seen in Section 8.1 of [15]. This prompted Gutman [23] in 1978 to define 

energy of a graph as follows: If G is a graph of order n with eigenvalues Aj, where 

i = 1,2, • • • , n, then the energy of G is

«(G)=iw.
2=1

In the literature, there is no standard algebraic expression ( formula) readily 

available for the sum of the magnitudes of the roots of a polynomial in terms of 

its coefficients. Hence finding energy of a graph without actually obtaining the 

spectra is a non-trivial task. The best-known formula for energy of a graph G 

with characteristic polynomial P(G; x) was obtained by Coulson in 1940, and is 

in the form of an integral:

E(G) =

The formula (1.5.1) is known as the Coulson’s formula for energy.

~8
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Chapter 1 Introduction

If
n

P(G-,x) = Y/aixn~\

then (1.5.1) gives

The above formula gives a way to compare energy of certain graphs.

Some experimental studies in Quantum Chemistry had pointed towards a sim

ple regularity that the energy of a graph increases with the increase of the number 

of vertices ( say n) and edges ( say m). A famous approximation, quantifying the 

above regularity, is the McClelland formula [46]

which was found chemically highly satisfactory (see [23] for details). A naive 

extension of this rule to all graphs resulted in the conjecture by Gutman [23] in 

1978 that among n-vertex graphs, the complete graph Kn has maximal energy. 

This conjecture was disproved first by Chris Godsil in the early 1980s, and there 

exist graphs whose energy exceeds E(Kn). A graph G, such that E(G) > E(Kn), 

is called hyperenergetic. There exist hyperenergetic graphs on n vertices, for 

every n > 9. Walikar et al. [60] proved in 1998 that the line graph of Kn is 

hyperenergetic, for n > 5.

Though several lower and upper bounds for E{G) were known, a very simple 

and elegant bound has been observed only very recently. Gutman [24] has shown 

in 2000 that

E(G) ay/2mn\ a w 0.9,

2y/in < E(G) < 2m,

9



Section 1.5 Energy of a graph

and, if G has no isolated vertex, then

E(G) < 2v^I. (1.5.2)

Moreover, the bound (1.5.2) is sharp if and only if G is the n-vertex star Sn.

The following bounds for energy is known for long as McCelland inequalities, 

and was obtained by McCelland [46] in 1971.

^2m + n(n — l)|detA(G)|n < E(G) < V2mn. 

In 1978, Gutman [23] had shown that

/9m.\ 22mE{G) < — + 
n \

(n-1)
2m \2

2m — ( — J

For a fc-regular graph G, k — and we get, as an immediate consequence of 

(1.5.3),

\ E(G) <k + y/k(n - l)(n -k) = B2.

There are regular graphs (all complete graphs for example) for which the equality 

in (1.5.2) holds. In other words, the bounds Bx and B2 are both sharp. Recently, 

using (1.5.2) Baiakrishnan [2] has shown that given e > 0, there exists a ^-regular 

graph G of order n with k < n — 1 and < e, for infinitely many values of n.

Koolen et al. [40] has improved the upper bound (1.5.3) for bipartite graphs 

in 2003 and proved that for such graphs

E(G) <2(^| +

\
( 2 m\2

(n~2) 2m - 2 ( — ]
[ V n J J (HD

Moreover, they found an upper bound without involving of m for the energy of 

bipartite graphs,

E(G)<-j=(V2 + V^),

10



Chapter 1 Introduction

and characterized the graphs for which (1.5.3) and (1.5.4) are sharp.

Graphs with extremal energies in certain classes of graphs have been studied 

by several authors and we present below some of the known results.

Graphs with extremal energy have been determined for n-vertex trees [22, 41, 

66] and n-vertex trees with perfect matchings [65]. For a given positive integer 

d, the tree with the minimal energy having diameter at least d is determined in 

[36]. In [63], trees with the smallest and the second smallest energies in the class 

of trees having matchings of a given size are characterized.

Let Sn be the graph obtained from the star graph Sn by adding an edge. For 

n > 6, it is proved in [35] that S'* is the unique graph having minimal energy 

among all unicyclic graphs of order n.

Caporossi et al. [10] conjectured in 1999 that among all n-vertex unicyclic 

graphs, Cn has the maximum energy for n < 7 and n — 9,10,11,13,15. For 

other values of n the graph P® is the unicyclic graph having the maximum energy, 

where P® is obtained by attaching Pn_6 to one of the vertices of C6. In [35], Hou 

et al. attempted in 2002 to solve the problem, but succeeded only partially.

In Chapter 5, we give ordering of graphs in terms of their energy among all 

unicyclic graphs with independence number /3 = 2,3.

1.6 Distance spectra of graphs

The distance between two vertices u,v € V is denoted by duv and is defined 

as the length of the shortest path between u and v in G. The distance matrix 

D = (duv)UiV(zV is a symmetric real matrix, with real eigenvalues [15]. The distance

IT



Section 1.6 Distance spectra of graphs

spectral radius p(G) = pa of G is the largest eigenvalue of the distance matrix D 

of the graph G.

Distance energy DE(G) is a newly introduced molecular graph-based analog of 

the total ^--electron energy, and it is defined as the sum of the absolute eigenvalues 

of the molecular distance matrix. The distance spectra of trees and unicyclic 

graphs have exactly one positive eigenvalue, and therefore the distance energy 

for trees and unicyclic graphs is equal to the double of distance spectral radius 

[6, 47],

The distance spectral radius is a useful molecular descriptor in QSPR mod

elling, as demonstrated by Consonni and Todeschini in [14]. For more details on 

distance matrices and distance energy one may refer to [39, 51, 57].

Baiaban et al. [1] proposed the use of p(G) as a molecular descriptor, while in 

[28] it was successfully used to infer the extent of branching and model boiling 

points of alkanes. Recently in [68] and [69], Zhou and Trinajstic provided upper 

and lower bounds for p(G) in terms of the number of vertices, Wiener index and 

Zagreb index. Balasubramanian in [5, 4] pointed out that the spectra of the 

distance matrices of many graphs such as the polyacenes, honeycomb and square 

lattice have exactly one positive eigenvalue, and he computed the spectrum of 

fullerenes Ceo and C70.

Bapat et al. in [6] showed various connections between the distance matrix 

D(G) and the Laplacian matrix L(G) of a graph. Bapat in [5, 6] calculated the 

determinant and inverses of the distance matrices of weighted trees and unicyclic 

graphs. Merris in [47] obtained an interlacing inequality involving the distance 

and Laplacian eigenvalues of trees.

12



Chapter 1 Introduction

Let e = uv be an edge of the connected graph G such that G' = G — e is also 

connected, and let D' be the distance matrix of G — e. The removal of e does not 

create shorter paths than the ones in G, and therefore, dij < dC for all i, j E V. 

Moreover, 1 = duv < d'uv and by the Perron-Frobenius theorem, one can conclude 

that

p(G)<p(G-e). (L6p

In particular, for any spanning tree T of G, we have that

p(G) < p(T). (Tm)

Similarly, adding a new edge / = st to G does not increase distances, while it 

does decrease at least one distance; the distance between s and t is one in G + / 

and at least two in G. Again by the Perron-Ftobenius theorem,

p(G + f)<p(G). (OJ)

Inequality (1.6.3) tells us immediately that the complete graph Kn has the 

minimum distance spectral radius among the connected graphs on n vertices, 

while the inequality (1.6.2) shows that the maximum distance spectral radius 

will be attained for a particular tree.

G. Indulal in [39] has found sharp bounds on the distance spectral radius and 

the distance energy of graphs. In [38] Hie characterized n-vertex trees with given 

matching number m which minimize the distance spectral radius. Liu has char

acterized graphs with minimal distance spectral radius in three classes of simple 

connected graphs with n vertices: with fixed vertex connectivity, matching num

ber and chromatic number, respectively in [45]. Subhi and Powers in [58] proved

13



Section 1.6 Distance spectra of graphs

that for n > 3 the path Pn has the maximum distance spectral radius among 

trees on n vertices. Stevanovic and Ilic in [57] generalized this result, and proved 

that among trees with fixed maximum degree A, the broom graph has maximum 

distance spectral radius and proved that the star Sn is the unique graph with 

minimal distance spectral radius among trees on n vertices. The investigation on 

the spectral radius of graphs is an important topic in the theory of graph spectra. 

Recently, the problem of finding all graphs with maximal or minimal distance 

spectral radius among a class of graphs has been studied extensively.

In Chapter 6, we study the distance matrix of a graph and obtained some graph 

transformations which effects the distance spectral radius of graphs. Applying our 

transformation, we determine the graphs having maximal and minimal distance 

spectral radius among the tree like graphs.

Lastly, in Chapter 7, we give some open problems for future research.

14



Chapter 2

Singularity of graphs

In this chapter we derive some results regarding the singularity of graphs.

2.1 Introduction

Let G be a simple graph. The multiplicity of 0 as an eigenvalue of A(G) is the 

nullity of G and is denoted by 77(G). For a singular graph G, the eigenvectors of 

A(G) corresponding to the eigenvalue 0 are the null-eigenvectors of G and the 

null-space of A(G) is the null-space of G.

We will use the following well-known results in computing the nullity of a 

graph.

Theorem 2.1.1. [16] Let v be a pendent vertex of a graph G and u be the vertex 

in G adjacent to v. Then tj(G) = r)(G -u-v), where G — u - v is the induced 

subgraph of G obtained by deleting u and v.

Theorem 2.1.2. [52] Let G be the graph obtained by joining the vertex x of a 

graph G\ to the vertex y of a graph G-x by an edge. Then

det A(G) = det A(Gi) det A{G%) — det A(G\ — x) det A(G% — y).

15



Section 2.2 Some useful results regarding the singularity of a graph

Theorem 2.1.3. [52] Let jFefl, 2,3,4,5,6] be an induced subgraph of G with 

deg(2) = deg(3) = deg(4) = deg(5) = 2. If H is the graph formed from G — 

{2,3,4,5} by joining vertices 1 and 6 with an edge, then det A(G) = detA(H).

Corollary 2.1.4. [52] Let C^l, 2,3,4,1] be a subgraph of G, where deg(l) = 2. 

If Gq is the graph obtained from G by removing the edges [2,3] and [3,4], then 

det A(Gq) = det A(G).

2.2 Some useful results regarding the singular

ity of a graph 

*Let V(G) and E(G) denote the vertex set {ui, V2, ■ ■ ■, vn} and the edge set of 

a graph G, respectively. The neighborhood of a vertex v 6 V in G is defined 

to be N(v) = {u e V(G)| uv € E(G)}. A nonzero vector (0:1,02, • • • ,a»)* is a 

null-eigenvector of G if and only if for each v% e V(G) we have Y^VjeN(v,) ai ~ 0*

Definition 2.2.1. [49] A pair Vi, V2 of subsets of V(G) is said to satisfy property

(N) if

(a) Fi and V2 are nonempty and disjoint, and

(b) LUn N(v) = LUv, N(v).

Further, such a pair is said to be minimal satisfying the property (N) if for any 

pair Ui, U2 of subsets ofV(G) satisfying the property (N) with U\ C V\, U2 C V2l

16



Chapter 2 Singularity of graphs

we have Ui = V\, U2 — V2.

1 2

3 4

Figure 2.1: C4

Example 2.2.2. For the cycle C4 in Figure 2.1, V\ = {1,2}, V2 — {3,4} is a pair 

satisfying property (N). But V\, V2 is not a minimal pair as Ui = {2}, U2 = {4} 

is a pair with property (N) and U\ C V[, U2 C V2.

Theorem 2.2.3. [49] Let G be a connected graph on n > 2 vertices. If G is 

singular, then V(G) has a pair of subsets satisfying the property (N).

Theorem 2.2.4. [49] A unicyclic graph G is singular if and only if there is a 

pair of subsets V4, V2 ofV(G) satisfying the property (N).

Definition 2.2.5. [49] A pair V\, V2 of subsets of V{G) is said to satisfy property 

(S) if it satisfies the property (N) and for all pairs u,v in Vi, i = 1,2, we have 

N(u) n N(v) = 0.

Example 2.2.6. In Figure 2.1, the cycle C4 has U\ — {2}, U2 = {4} as a pair 

satisfying property (S).

17



Section 2.3 Singularity and determinant of a graph

Theorem 2.2.7. [49] Let G be a graph and suppose that V(G) has a pair of 

subsets Vi, V2 satisfying the property (S). Then G is singular.

Corollary 2.2.8. [49] Let G be a graph with the pair Vi, V2 of subsets ofV(G) 

satisfying the property (S). Let ctj be defined by

Oij

1 ifVjeVu 

-1 if v3 e V2, 

0 otherwise.

Then (c*i, a2,..., an)1 is a null-eigenvector of G.

(US

2.3 Singularity and determinant of a graph

The following Theorem is one of the main results of this chapter, which gives a 

sufficient condition for G to be singular.

Theorem 2.3.1. Let G be a graph with a nonempty subset V\ ofV(G), such that

Then G is singular.

veVi
<M-i.

Proof. Let G be a graph with-a nonempty subset Vi of V(G), such that

U
veVi

<|Vi|-l.

18



Chapter 2 Singularity of graphs

Let Vi — ... ,vp}. Consider the equation JX=i “A = 0> which is equiva

lent to the system of n equations

p

= 0, j = l,2,...,n. (2.3.1)
i=l

Since at least n — p + 1 vertices are absent in (JueVi N(v), so at least that many 

equations in 2.3.1 take the form

p

SQl0 = 0’i=i

which can be omitted. Thus we are left with at most p—1 homogeneous equations 

in p variables, which have a nonzero solution. As a consequence, the rows of A{G) 

are linearly dependent, implying that G is singular. I

Example 2.3.2. The graph G\{Vi, E\) in the Figure 2.2, is singular. Since the 

subset U = {7,8,9,1,2} of V\ is such that \U\ = 5 and

U{JV(i)|i6{7,8,9,lt2}} = 4.

We can see that G' is singular, where vertex of set G' is V/ = V\ U V2 and edge 

set of G', E' = Ei U E2 U £3 where G2{V2, E2) is any graph and E3 C [uv\ u £ 

{3,4,5,6}, u £ V2}.

Corollary 2.3.3. Let G be a graph of order n. If there exists a subset U of V, 

the vertex set of G, such that U is a vertex independent set and \U\ > |, then G 

is singular.

19



Section 2.3 Singularity and determinant of a graph

7 8 9

Gx

3

G'

Figure 2.2: A singular graph which satisfies the condition of Theorem 2.3.1 

Proof. Since U is vertex independent set, therefore

\U{N{v)\veU}\ < n — \U\

n
c n--
_ 71

2
= \u\.

Hence G is singular.

Corollary 2.3.4. Let G be a bipartite graph with bipartition V\,V%> such that 

|Vi [ ^ |V2i- Then G is singular.

Corollary 2.3.5. Let G be a bipartite graph with bipartition (Q, 3>) and A C tt, 

if there exists no matching in G that covers the vertices in A then G is singular.
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Chapter 2 Singularity of graphs

Proof. By Hall’s theorem, there exists at least one subset B of A such that 

|jV(J3)| < |B|, where N(B) is the set of all vertices in fi adjacent to a vertex in 

B. Therefore G is singular. H

Corollary 2.3.6. If in G there exists a subset V\ of V such that

IJJVW
t>evi

= N-A,

then m(0) > A where m(0) denotes the multiplicity of zero as an eigenvalue ofG.

Proof. Since |Ut,6Vi N(v)\ = |Vi| - A, by Theorem 2.3.1, G is singular. To get 

the highest order non vanishing minor of A(G), we shall have to remove at least 

A rows out of those represented by v in Vj. Therefore, rank(G) <n — A and so 

m(0) > A. I

Corollary 2.3.7. If in G there exists an induced subgraph X(m,f), such that 

there are no disjoint subsets Vi, V2 of V with LLeVi N(v) = U„ev2 N(v), then 

m(0) <n — m.

Proof. Let V(X) = {vi,v2,... ,vm}. The given condition and Theorem 2.3.1 

together imply that X is nonsingular. Now out of the rows of A(G), at least m 

rows are linearly independent. Therefore m(0) <n — m. g

Theorem 2.3.8. If there exists a subset U of V\ in G\ such that

U«veu

then det G' — det G\ det G2 where Gr is a graph obtained by joining a vertex x in

( (J N(v)) - U
veu
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Section 2.3 Singularity and determinant of a graph

with any vertex y in any graph G2. 

Proof. By Theorem 2.1.2, we have

det G' = det G\ det (?2 — det(Gi — x) det((?2 — y)-

Since x 6 ^ LLet/ Ar(u)^ — U we will have a nonempty subclass U' of V', the 

vertex set of G\ — x, such that \U'\ > |Uuet/' N(v) \ ■ Therefore det(Gi — x) = 0 

and hence det G' = det G\ det G2. ■

Theorem 2.3.9. Let P$ be an induced subgraph of G with deg(2) = deg(3) = 

deg(4) = deg(5) = 2. If there exists a subset U of V such that 2,3,4,5 ^ [/, 1 € U, 

6 e (Jig!/ N(i) and \ U\ = |Uiec/^(*)| > ^en @ *s singular.

Proof. Let H be a graph formed from G — {2,3,4,5} by joining 1 and 6 by an 

edge. By Theorem 2.1.3, det G = det H. Suppose N( 1) 6 S', 6 € |Jf=1 N(i). Since 

deg( 2) = deg (3) — deg (A) = deg( 5) = 2 and N( 1) 6 S', therefore 2 e |Jf=i 
in G.

Again in H, 2 ^ U?=1 N(i) and 2 is replaced by 6. But, since 6 already exists 

in (J?=1 N(i) in G, so for H we get a nonempty subclass S' of N(H) such that

m> UN(i)es>

Therefore det H = 0 and so G is singular.

Example 2.3.10. The graph in Figure 2.3 with U — {1,7,8,9}, satisfies all 

the conditions of the Theorem 2.3.9 for any induced subgraph Gi, G2 and G3. 

Therefore the graph is singular.
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Chapter 2 Singularity of graphs

Figure 2.3: A singular graph which satisfies the condition of Theorem 2.3.9

Theorem 2.3.11. Let C4 = [1,2,3,4,1] be a subgraph of G where deg( 1) = 

2. If there exists a subclass S = (1V(1), N(2),..., N(p)} of N such that 3 ^ 

IJU W(i), i ± 2,4; 2,4 $ N(i), V i f- 3 and N( 1) £ S' and either N(2), iV(3) 6 S 

or JV(3), iV(4) € S and ateo |S| = U— 2, then detG' = 0, tafiere G' 

is a graph obtained from G by removing the edges [2,3] and [3,4].

Proof. Let G' be the graph obtained from G by removing the edges [2,3] and 

[3,4]. Therefore, by Corollary 2.1.4 detG = detG'. suppose N(2),N(3) G S, 

since 3 Uf_i A'(i), i^ 2,4; 2,4 ^ JV(i), Vi 7^ 3 and iV(l) ^ S therefore 2,3,4 G 

Uiv(i)es ^(i) case °f G but 2,3,4 £ Ujv(i)es N(i) in case of G'. Therefore we 

get a nonempty subclass S' of IV(G') in G' such that |S'| > Uw^es' N(i) • 

Therefore detG = 0, detG' = 0. Similarly considering N(3),N(A) G S we can 

show det G = det G' = 0. ■

Example 2.3.12. The graph G in Figure 2-4 satisfies the conditions of the The-
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Section 2.3 Singularity and determinant of a graph

1 2

1 2

Figure 2.4: A graph which satisfies the conditions of the Theorem 2.3.11 

orem 2.3.11 for any induced subgraph G\ and G2. Therefore G' is singular.

Corollary 2.3.13. //detGi = 0 or det G2 = 0, then detG' = 0.

Theorem 2.3.14. If in a graph G there exist two disjoint subsets U, W of V, 

the vertex set of G such that f\6t/ N{v) = f\6w N(v) and N(vi)\jN(v2) = V 

Vui,v2 € U, v1 ^ v2 and \/vi,v2 E W, v1 ^ v2, then detG = 0, where G is the 

complement of G.

Proof. Let us denote the neighborhood of any vertex v in G by N'(v). Then
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Chapter 2 Singularity of graphs

N'(v) = N(v), where N(v) is the neighborhood of v in G. Now

n =n w
v €U v&W

=* U N{v) = (J N(v)v€~U v£W

=» u = U W'W-
veu vew

Again

Which gives N(v)f]N(v) = (f> for all vi,v2 G U, Vi ^ v2 and for all v\,v2 G W, 

ni 7*= v2. Thus detG = 0. ■

Theorem 2.3.15. J/in a graph G there existp vertices vltv2,... ,vp such that

then det G = 0.

Proof. We have

Therefore det G = 0.

f>w

4=1
>n-p + 1,

!>(«■>

i=l

=>• (Vw

Uww
*=i

U^'w

>n—p+1

< n — (n — p +1)

< (P ~ 1)

< (P- !)•
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Section 2.3 Singularity and determinant of a graph

Definition 2.3.16. The tensor product of two graphs G\ and G2, denoted by 

Gi AG2l has the vertex set V = Vi x V2 and (ui,vx), (U2, V2) £ V are adjacent in 

Gi A G2 if only if [ui, u2] € Ex and [t>i, v2] G E2.

Theorem 2.3.17. If G is a graph such that there exists a subclass

S={N(v1),N(v2),...,N{vp)}

of N such that |[Ji=i A(ut)| < p, then det(G A G\ A G2 A ... A Gk) = 0. For 

any graph Gu i = 1,2,3,..., k the multiplicity of zero as an eigenvalue of G' = 

G A Gx A G2 A ... A Gk is at least nt where ni is the number of vertices in 

Gi.

Proof. Let

S= {N(u,ui,u2, ...,uk)\N(u) £ S}.

Then

|5[ = p x nx x n2 x ... x Uk-

Also
pUN(x)esN(x) C {(it,ufc),« e U N(Vi)}.

1=1

But

*=1

< ip-1)

U

N(x)es

k
< (p - 1) x nx x n2... x nk = l^l - JJ n*

i=1
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Chapter 2 Singularity of graphs

Which gives

151 > UN(u)es ♦IKi=l
Therefore det(G A G\ A G2 A ... A Gk) = 0 and m(0) > J|f=i ni-

Definition 2.3.18. The total graph T(G) of a graph G has the vertex setVuE 

and two vertices ofT(G) are adjacent if one of the following holds

(a) they are Vi,v3 G V and [Vi,Vj] G E,

(b) one is v EV and the other e G E and e is incident with vertex v in G,

(c) they are e^ e3 G E and the edges ei} ej are adjacent in G.

Theorem 2.3.19. IfGis singular, then there exist two disjoint subsets X and Y 

of the vertex set ofT(G) such that N(v) and U^er N(v) have some vertices 

in common and the remaining vertices in each of the unions are adjacent to at 

least one of the remaining vertices of the other union and are adjacent to exactly 

one of the common vertices.

Proof. Let det <5 = 0. Then there exist two disjoint subsets Uand W of V, the 

vertex set of G such that

U N(v) = (J N(v) = Q(say).

vex ver

Now consider X and Y as subsets of vertex set of T(G) then U«ex N(v) — OUWi, 

N(v) = U W2 where W\ and W2 are the sets of edges from X to Q, and 

from Y to respectively in G. (Uagx N{v)) fl (U„ey N(v)) = V and obviously
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the vertices in Wj and Wi are adjacent to at least one vertex in each other and 

exactly one vertex in O. g
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Chapter 3

Singularity of 0-graphs

In this chapter we establish a necessary and sufficient condition for a graph G to 

be singular. Further, we have characterized the singularity of 0-graphs and have 

found the nullity of 0-graphs.

3.1 Introduction

In the following we list some fundamental concepts which are useful for our pur

pose.

Definition 3.1.1. A bieyclic graph is a simple connected graph in which number 

edges equal the number of vertices plus one.

The cycle and the path on n vertices are denoted by Cn and Pn, respectively. 

Let Cp and Cq be two vertex-disjoint cycles. Suppose that Vq is a vertex of Cp and 

vi is a vertex of Cq. Joining vq and Vi by a path vqVi ... Vi of length l, where l > 0 

(1 = 0 means identifying v0 with Vi), the resulting graph is called an oo-graph 

and is denoted by oo(p. I, q} [ see Figure 3.1]. We denote by Bn*, the class of all 

bicyclic graphs that have an oo-graph as an induced subgraph.
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Let Pi+i,Pp+i and Pq+\ be three vertex-disjoint paths, where min{p,l,q} > 1 

and at most one of them is 1. Identifying the initial vertices and the terminal 

vertices of P;+1, Pp+i and Pq+i, respectively, the resultant graph is called a 0- 

graph and is denoted by 6(j>,l,q). By B**, we denote the class of all bieyelie 

graphs that have a 0-graph as an induced subgraph.

Figure 3.1: oo-graph and 0-graph

Thus the class Bn, of bicyclic graphs can be partitioned into two classes: the 

class of graphs which contain an oo-graph as an induced subgraph and the class 

of graphs which contain a 0-graph as an induced subgraph i.e., Bn = B*n U B**.

Definition 3.1.2. A bicyclic graph G which is either a 0-graph or obtained by 

attaching some pendent vertices to a 0-graph is called an elementary 0-graph.

We will use the following well-known results in computing the nullity of a 

graph.

Theorem 3.1.3. [16] Let v be a pendent vertex of a graph G and u be the vertex 

in G adjacent to v. Then, rf(G) = rj(G — u — v), where G — u — v is the induced 

subgraph of G obtained by deleting u and v.
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Chapter 3 Singularity of 0-graphs

Theorem 3.1.4. [15] A path with four vertices of valency 2 in a graph G can be 

replaced by an edge [see Figure 3.2] without changing the value ofr)(G).

A A

Figure 3.2:

Theorem 3.1.5. [15] Let G\ and G2 be two bipartite graphs. Ifp{G\) = 0, and 

if the graph G is obtained by joining an arbitrary vertex of G\ by an edge with an 

arbitrary vertex of G2, then the relation r]{G) = r)(G2) holds.

Theorem 3.1.6. [15] Let G be a bipartite graph in which there does not exist any 

cycle of length q = 0 (mod 4), then r](G) — n-2q, where q is maximum number 

mutually nonadjacent edges in G.

Definition 3.1.7. [49] Let V(G) and E(G) denote the vertex set {ui,u2,... ,vn} 

and the edge set of a graph G, respectively. The neighborhood of a vertex v € V 

in G is defined to be N(v) — {u € V(G) | uv € E(G)}. A nonzero vector 

(ai, a2,.. ■, ctny is a null-eigenvector of G if and only if for each Vi € V(G) we 

have J2v}eN(vt) ao = 0- Let A{G) - [Cu C2,.. •, Cn], where Cj is the jth column
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vector of A(G). If G is singular and (ax, a2,... ,(*„)* is a null-eigenvector of 

A(G), then the relation

cnCi + OL2C2 + • • • + anCn = 0

is called a kernel relation of G.

Definition 3.1.8. A subset A of a vector space is said to be minimal dependent 

set if

(a) A is dependent

(b) any proper subset of A is linearly independent.

Definition 3.1.9. [49] A pair Fi, V2 of subsets of V(G) is said to satisfy the 

property (N) if (a) Vi and F2 are nonempty and disjoint, and (b) \J{N(v) | v £ 

Vi} = y{A(u) | v e V2}. Further, such a pair is said to be minimal satisfying 

the property (N) if for any pair Ux, U2 of V(G) satisfying the property (N) with 

Ui C Vi, U2 C y2, we have Ux = Vi, U2 = Fa-

Theorem 3.1.10. [49] Let G be a connected graph on n > 2 vertices. If G is 

singular, then V(G) has a pair of subsets satisfying the property (N).

Definition 3.1.11. [49] A pair Fi, V2 of subsets of V(G) is said to satisfy the 

property (S) if it satisfies the property (N) and for all pairs u,v in F, i — 1,2, 

we have N(u) fl N(v) = 0.
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Chapter 3 Singularity of 0-graphs

Theorem 3.1.12. [49]// V(G) has a pair of subsets Vi and V2 satisfying the 

property (S), then G is singular.
1

Theorem 3.1.13. [49] Let T be a nontrivial tree. Then, the following statements 

are equivalent.

(a) T is singular.

(b) There exist subsets V\ and V2 ofV(T) satisfying the property (N).

(c) There exist subsets V\ and V2 ofV(T) satisfying the property (S).

Theorem 3.1.14. [49] A unicyclic graph G is singular if and only if there is a 

pair of subsets V\ and V2 ofV(G) satisfying the property (N).

Definition 3.1.15. [49] An elementary unicyclic graph is a graph G which is 

either a cycle or is obtained by attaching some pendent vertices to a cycle. An 

outer matching of a unicyclic graph G which is not elementary is a matching Mq 

in G such that G — V(M0) is the disjoint union of an elementary unicyclic graph 

and a set of isolated vertices (possibly empty).

Proposition 3.1.16. [50] Let G be an elementary unicyclic graph on n vertices 

having a pendant. Then r}(G) = n — 2q, where q is the maximum number of 

mutually nonadjacent edges in G.

Theorem 3.1.17. [50] A unicyclic graph G is singular if and only if one of the 

following holds:
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(a) G is singular elementary.

(b) G is obtained from a singular elementary unicyclic graph Gq by attaching 

trees at vertices of Gq such that the graph G — V(C?o) has a perfect matching.

(c) There exists a tree Tv attached at a vertex u of the cycle with uv as the 

attaching edge such that none of Tv and Tv — v has a perfect matching.

Theorem 3.1.10 gives a necessary condition for G to be singular. Theo

rem 3.1.13 and Theorem 3.1.14 shows that this necessary condition is also suffi

cient for unicyclic and acyclic graphs. In general, this condition is not sufficient. 

For example, consider the graph oo(3,3,3) [ see Figure 3.3 ] on the vertex set 

{1,2,3,4,5,6,7,8}. Then V\ = {1,2,5,6}, V2 = {3,4,7,8} is a minimal pair in 

oo(3,3,3) satisfying the property (N), though oo(3,3,3) is nonsingular.

1 7

Figure 3.3: oo(3,3,3)

In section 2 of this chapter, we derive a necessary and sufficient condition for a 

graph to be singular. We also prove two results which will be useful to find the 

nullity of a graph. In section 3, we show how this characterization can be used 

to find the nullity of a graph in 5*”.
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Chapter 3 Singularity of 0-graphs

3.2 Necessary and sufficient condition for a graph 

to be singular

By A[n] we denote the multiset obtained by taking n copies of each element of 

the set A. By A[n] U B[m] we mean the multiset obtained by taking n copies of 

each element of the set A and m copies of each element of the set B. Clearly 

A[l] U B[l) = A U B, if and only if A and B are disjoint.

Definition 3.2.1. A pair of subsets V\ = (u* | i = 1,2,..., /} and V2 = {vi\i — 

l +1, l + 2,..., k} ofV(G) is said to satisfy the property (NS) if (a) Vi and V2 are 

nonempty and disjoint, (b) there exist positive itegers c*i, a2,..., on, S1+1, Pi+2, ■ • • Pk 

such that U{iV(ul)[ai] | vr e Vi} = U{iV(^)[A] | vt e V2}. Further, such a pair 

is said to be minimal satisfying the property (NS) if for any pair U\,U2 ofV(G) 

satisfying the property (NS) with U\ C Vi, U2 C V2) we have Ui = Pi, U2 = V2.

Note that a pair Vi and V2 of V(G) satisfying the property (NS) satisfy the 

property (N). Also a pair V, and V2 of V(G) satisfying the property (S) satisfy 

the property (NS).

Theorem 3.2.2. A graph G is singular if and only if there exist a minimal pair 

satisfying the property (NS).

Proof. (Proof of the necessary part) Let G be singular, therefore columns of 

A{G) are linearly dependent. Let (Ci, C2, • • • , Q} be minimal dependent set of 

columns of A(G). There exist non-zero integers ax,a2,...,ai with g.c.d. equal
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to 1 such that

ctiCi + 01.2C2 + • • • + oliCi = 0

Let V\ = {vj | a3 > 0} and V2 = {v3 \ a3 < 0}. Since A{G) is nonnegative and 

has no zero columns, Vi and V2 are nonempty. Clearly, Vi fl V2 = 0, and we have

E <*,% = e ac,, dmVj€-Vi V]£V2

where a, = —fy.

Let

X = UWvjJlaj] | Vj £ V,}

and

r = u{jv(v,)[ftl I ^ s vy.
Let Vi £ X and it appears 7 times in X. Therefore there exist

such that Vi e N(vp), where p = i, i + 1,..., s; Vi ^ N(vr) for r ^ {*, i + 1,..., s} 

and an + ai+1 + ... + as = 7 since G is without loops. Therefore a*p = 1, where 

p = i, i + 1,..., s; and atr = 0 for r ^ {i, i + 1,..., s}. This implies that the ith 

entry of the vector £ gVi ctjC3 is 7. In view of (3.2.1), the ith entry of the vector 

J2Vjev2 PjCj must be 7. Consequently, there exist

/3jJj+1,...,pte{pj\vjeV2}

such that aip = 1, where p = j, j + 1,..., t; air = 0 for r {j,j + l,...,t} and 

fy+Pj+i +... + Pt = 7- Therefore v{ e N(vp), where p = j, j+1,..., t; Vi <£ N{vr) 

for r (£ {j,j + 1,... ,t}, i.e., appears 7 times in Y = | v3 6 V2}.
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Interchanging the role of X and Y, we can show that if Vi appears m times in Y, 

then it also appears m times in X. Therefore X — Y.

(Proof of the sufficient part ) Suppose V(G) has a minimal pair Vi, V2 sat

isfying the property (NS). Let Vi = {vi, v2,..., vt) and V2 = {vt+i,vt+2,..., vk}. 

Therefore there exist positive integers a.\ ,a2,... ,ai, 0i+i,0i+2, ...0k such that

U{N(vi)[ai] | Vi G Vi} = U{JV(«i)[ft] j Vi G V2}.

Now Vi appears 7 times in U{lV(u*)[a!t] | Vi G Vi} if and only if it appears 7 times 

in U{iV (?;*)[/%] | vl G V2}. Therefore,

E a>ci = E (HD
t>j 6V1 v3£V2

which shows that the columns of A(G) are linearly dependent. ' ■

Corollary 3.2.3. Let Vi,V2 be a pair in V(G) satisfying the property (NS). Let 

Xj be defined by

x3 =

a3 if v3 G Vi,

-03 if Vj G V2,

0 otherwise.

(IZ3l

Then (®i, x2,..., xn)1 is a null-eigenvector of G.

Example 3.2.4. For the graph G, [ see Figure 3.4 ]V\ = {1,5,9,13} and V2 =
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2 1 9 10

3 > 6
11

4 5 13 12

G

Figure 3.4:

{3,7,11} is a pair satisfying property(NS). Since

iV(l)[l] U N{5)[1] U N(9)[1] U iV(13)[l] = iV(3)[l] U iV(7)[2] U iV(ll)[l],

is a null eigenvector of G.

Before ending this section, we prove two results which will be useful for the 

next section.

Lemma 3.2.5. Let G be a singular bipartite graph with bipartition V', V". If 

Vi, V2 is a minimal pair satisfying property (NS), then V\ U V2 C V' or Vi U V2 C

Proof. The vertices of G can be labeled so that adjacency matrix takes the form

therefore G is singular. Also, we see that

(1,0, -1,0,1,0, -2,0,1,0, -1,0, If

V".
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Let x
x" be the kernel eigenvector of G corresponding to the minimal pair

Vi, V2. If x' 7^ 0 and x" ^ 0, then x' and

x

0
x

are also kernel eigenvectors

of G which are linearly independent of ^ J . Therefore Vi, V2 is not a minimal 

pair for G. Thus either x' = 0 or x" = 0. Without loss of generality let x" = 0, 

therefore Vi, Vi C V'. ■

Theorem 3.2.6. Let G be a singular graph with a minimal pair (Vi, Vi) satisfying 

property (NS). If v\ E Vi U V2 and G — Vi is the induced subgraph of G obtained 

by deleting Vi, then 77(G) = rj(G — t>i) + 1.

Proof. Let V(G) = {vi,v2,...,vn}. Without loss of generality assume Vi = 

{vi,v2,... ,Vk} and V2 = {vk+i,Vk+2, • ■ •, vm}. Therefore there exist non zero real 

number ct*, where i = 1,2,3,..., m such that ,

U{N(vi)[ai\ | vt E Vi} = U{JV(u*)[a3] | vt E V2}.

Also A(G) has the following form

A(G) =

/ 0 Oi2 Ol3 • • 0\ m • 0\n \
O12 0 ®23 • • 0,2m a2n
®13 023 0 .

■ O3 m 03 n

Olm 02m 03 m . 0 • Ofnn

\ 0\n 02n O3n
: A(G - Vi U V2)

/

where % are either 0 or 1. Applying the elementary operations R\ -4 aiR\ + 

a2R2 + ... + amRm and Ci -4 o-iCi + a2C2 + ... + amCm to the matrix A(G),
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Section 3.2 Necessary and sufficient condition for a graph to be singular

we see that

/ 0 0 0
0 0 023
0 023 0

A{G) ~
0 02m 03 m

\ 0 02n «3n

0 ... 0 \
0>2m ■ • • O-ln

fl3m ••• 03n

0 ... Qmn
; A(G - Vi. U V2)

®mn

V°

Thus r}(G) = 1 + r)(G — v\).

0 0 ... 0 \

A{G -

G G-8

Figure 3.5:
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Chapter 3 Singularity of 0-graphs

Example 3.2.7. The graph G in Figure 3.5 is singular. Note that V\ = and 

Vi = {1?, 6} is a minimal pair satisfying property(NS). Thus r)(G) = 1 +tj(G — 8). 

Also Ui = {9,1} and U2 = {3^4} is a minimal pair satisfying property(NS). 

Therefore rj(G — 8) > 1. Since rj(G — 8 — 3) = 0, therefore r)(G) = 2.

3.3 Singularity of a graph in B**

Proposition 3.3.1. Let 6(p, l, q) be a 9-graph where p = l = q = 0 (mod 2), then

3 if p = l = q = 2 (mod 4) orp = l = q = 0 (mod 4), 

< 1 ifp = 1 = 2 (mod 4), q = 0 (mod 4) 

or p = l = 0 (mod 4), q = 2 (mod 4).

Proof. By Theorem 3.1.4, we have

77(0(2,2,2)) if p = Z = q = 2 (mod 4),
77(0(4,4,4)) if p = l = q = 4 (mod 4),

* 77(0(2,2,4)) if p = l = 2 (mod 4),g — 4 (mod 4),
77(0(4,4,2)) if p = l = 4 (mod 4), q = 2 (mod 4).

vo UQ

Vi
6( 2,2,2)

Ui
0(2,2,4)

Figure 3.6:
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Section 3.3 Singularity of a graph in B**

Now ({u0}>i}) is a minimal pair in 0(2,2,2) [see Figure 3.6] satisfying prop

erty (S). Therefore 0(2,2,2) is singular. By Theorem 3.2.6, 77(0(2,2,2)) = 1 + 

77(0(2,2,2) - vo) = 1 + 77(0*4) = 3. Similarly 77(0(4,4,4)) = 3.

Again ({«0}> {wi}) is a minimal pair in 0(2,2,4) [see Figure 3.6] satisfying prop

erty (S). Therefore 0(2,2,4) is singular. By Theorem 3.2.6, 77(0(2,2,4)) = 1 + 

77(0(2,2,4) - Uq = 1 + T](Ce) = 1. Similarly 77(0(4,4,2)) = 1. Thus the result 

follows. ■

Proposition 3.3.2. Let Q(p, Z, q) be a 9-graph where p = l = q = 1 (mod 2), then

v(d{p,l,q)) = 0

0(5,5,1) G

Figure 3.7:

Proof. By Theorem 3.1.4, we have

v{Hp, 1, q))

77(0(5,5,1)) if p = l = q — 1 (mod 4),
77(0(3,3,3)) if p = l = q = 3 (mod 4),
77(0(5,1,3)) Up = 1 = 1 (mod 4),q = 3 (mod 4), 
77(0(3,3,1)) if p = l = 3 (mod 4), q = 1 (mod 4).

Consider the graph G which is obtained from 0(5,5,1) by attaching a single

pendent vertex [ see Figure 3.7 ]. By Theorem 3.1.3, G is singular and 77(G) = 

1. Also ({v0, ^4, ^6}, {^2) t's, ^9}) is a minimal pair satisfying property (S). By

Theorem 3.2.6,

77(G) = 1 + 77 (G - v9) = 1 + 77(0(5,5,1))
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Chapter 3 Singularity of 0-graphs

and therefore, rj(9(5,5,1)) = 0. Similarly we can show that

77(0(3,3,3)) = 0 = 77(0(5,1,3)) = 77(0(3,3,1)).

Thus the result follows.

Proposition 3.3.3. //0(p, l,q) is a 6-graph where p, l are even and q is odd, then

v(9(pJ,q))
0 ifp + l ^ 0 (mod 4),

1 ifp + 1 = 0 (mod 4).

Figure 3.8:

Proof. Let p = l = 2 (mod 4) and q = 1 (mod 4). By Theorem 3.1.4, we have

V(6(p,l,q))

77(0(2,2,1)) if q = 1 (mod 4), 
77(0(2,2,3)) if q = 3 (mod 4), 

< 77(0(4,4,1)) if q = 1 (mod 4), 
77(0(4,4,3)) if q = 3 (mod 4).

Also ({uo}, {n2}) is a minimal pair in 0(2,2,1) [ see Figure 3.8 ] satisfying prop

erty (S). By Theorem 3.2.6, 77(0(2,2,1)) = 1 + 77(0(2,2,1) — vq) — 1. Similarly 

considering other cases we can show that 77(0(79, l, q)) = 1.
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Section 3.3 Singularity of a graph in B**

Again let, p +1 ^ 0 (mod 4), therefore either p = 2 (mod 4), 1 = 0 (mod 4) or 

p = 0 (mod 4), / = 2 (mod 4). Suppose p = 2 (mod 4) and l = 0 (mod 4). By 

Theorem 3.1.4, we have

n(B(v l a))-( r?^(2,4’if g = 3 (mod 4)>
VW, V) ~ | ^(2,4,1)) if q = 1 (mod 4).

Consider the graph G of Figure 3.8. Then ({uo,^}, {vi, v2}) is minimal pair 

satisfying property (NS). Therefore G is singular. By Theorem 3.2.6,

77(G) = 1 + 77(G - v3) = 1 + 77(0(2,4,3)).

Also 77(G) = 1+77(G - v2) = 1, therefore, 77(0(2,4,3)) = 0. Similarly we can show 

that 77(0(2,4,1) = 0. Thus the result follows. g

Proposition 3.3.4. //0(p, l, q) is a 9-graph where p, l are odd and q is even, then

p(0(M?))
0 ifp + l ^ 0 (mod 4),

<

1 ifp + l = 0 (mod 4).

V(j

Figure 3.9:
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Chapter 3 Singularity of 0-graphs

Proof. Let p 4- l ^ 0 (mod 4). Therefore either p = l = 1 (mod 4) or p = l =

3 (mod 4). Let p = 1 = 1 (mod 4). By Theorem 3.1.4, we have

Consider the graph G of Figure 3.9. Then G—v4 = 0(1,5,2). Now ({u0, {^2, ife})

is a minimal pair satisfying property (NS). Therefore G is singular. By Theo

rem 3.2.6,

77(G) = l + n(G-v<) = l + 77(0(1,5,2)).

Also by Theorem 3.2.6,77(G) = 1 + 77(00(3,0,3)). Since oo(3,0,3) is nonsingular, 

therefore 77(0(1,5,2)) = 0. Thus r](6(p,l,q)) = 0 if p = l = 1 (mod 4). Similarly, 

we can show that, 77(0(33, l, q)) = 0 if p = l = 3 (mod 4).

Figure 3.10:

Let p+l = 0 (mod 4). So let p = 1 (mod 4), / = 3 (mod 4). By Theorem 3.1.4, 

we have
n(B{n la))-! 7?^1’ 3>9 = 2 (mod 4)>
V{0(P,l,<7)) - j ^3>4)) i£qsQ (mod 4).

Now ({w0, Ui}, {772,773}) is a minimal pair in 0(1,3,2) [see Figure 3.10] satis

fying property (NS). Therefore 0(1,3,2) is singular. Also by Theorem 3.2.6, 

77(0(1,3,2)) = 77(0(1,3,2) - uo) = 1- Similarly, we can show that 77(0(1,3,4) = 1. 

Thus T)(d(p, l,q)) = 1, if p + Z = 0 (mod 4) and q is even . g
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Section 3.3 Singularity of a graph in B**

Singularity of elementary 0-graph: Let Go be an elementary 0-graph with 

pendent vertices. Let v be a pendent vertex in G attached at u of Gq. Then by 

Theorem 3.1.3, r}(G0) = rj(Go — uv). Since Go — uv is disjoint union of a tree or 

a unicyclic graph and a set of isolated vertices (possibly empty), we can find the 

nullity of Go — uv.

Definition 3.3.5. A matching Mq in a graph G in £?** is called an outer matching 

in G if G — V(M0) is the disjoint union of an elementary 0-graph and a set of 

isolated vertices (possibly empty). ( Note that Mq = 0, if G is elementary.)

Remark 3.3.6. If G is a graph in B** which is not elementary, then we construct 

an outer matching Mq as follows. Let ui be a (pendent) vertex which is at a 

maximum distance from 0(p, l, q) in G and i>i the vertex adjacent to u\. Then vj 

is not on 0(p, l, q), since G is not elementary. We choose the edge et = uiVi as an 

edge in Mo. Clearly, G — u\ - Vi is a disjoint union of a elementary 0-graph Gi 

and a set of isolated vertices (possibly empty). If Gi is not elementary, we can 

choose another edge for Mq by the same process, and then proceed recursively. 

The process must terminate and an outer matching Mq of G is obtained.

Example 3.3.7. Consider the graph G given in Figure 3.11. Here the set Mq 

of edges in bold face in the figure is an outer matching of G. The corresponding 

elementary 6-graph is Go(depicted in the figurejand the set of isolated vertices of 

G-Mois {17,21}.
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Chapter 3 Singularity of 0-graphs

Figure 3.11: An outer matching and the resulting elementary 0-graph

We denote the set of isolated vertices and the elementary component of G — 

V(Mq) by A0 and Gq, respectively.

Theorem 3.3.8. A graph G in £?** is singular if and only if one of the following 

holds:

(a) G is singular elementary 0-graph.

(b) G is obtained from a singular elementary 0-graph Gq by attaching trees at 

vertices of G0 such that the graph G — V(Gq) has a perfect matching.

(c) There exists a tree Tv attached at a vertex u of the 0-graph with uv as the 

attaching edge such that none of Tv and Tv — v has a perfect matching.

Proof. Suppose G is not elementary and choose an outer matching Mq of G. Let 

G — V(M0) be the disjoint union of the elementary 0-graph Gq and a set A0 of 

isolated vertices (possibly empty). We note that G is obtained by attaching trees 

at the vertices of Go. In view of Theorem 3.1.3, we have r}(G) = v(Gq) + |A0|. 

Therefore, G is singular if and only if either A0 ^ 0 or Go is singular. If Ao = 0, 

then G — V(Gq) has a perfect matching, and therefore G is singular if and only
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Section 3.3 Singularity of a graph in B**

if (b) holds. Suppose Ao 0 and w £ Ao. Let Tv be a tree in G, attached at 

a vertex u of the 0-graph with uv as the attaching edge, of which w is a vertex. 

Since w £ Ao, Tv does not have a perfect matching. Moreover, if Tv — v has a 

perfect matching, then v is a vertex of Go- In that case, w is a vertex of Tv — v 

and therefore is in V(Mq). Since this is not the case, therefore (c) holds. ■

Corollary 3.3.9. If G is a graph in which is not a 6-graph then

r]{G) = t](Gq) + |Ao|

Example 3.3.10. The graph G in Figure 3.11 has nullity, r}(G) = 2+r}(G0) = 4, 

since t){Gq) = 2.
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Chapter 5

On the energy of unicyclic graphs

In this chapter, we study the energy of a unicyclic graph. Our main tool for this 

study will be “ Coulson integral formula ” for energy of a graph.

5.1 Introduction

Let G be a simple graph on n vertices and let A(G) be its adjacency matrix. The 

characteristic polynomial-of A(G),

n
4>{G\ A) = det(AJ - -A(G)) = a,®"-*, fsll)

i=0

where / is the unit matrix of order n, is the characteristic polynomial of G. The 

eigenvalues of A(G), denoted by Ai, A2,..., An, are the eigenvalues of G. Since 

A(G) is symmetric, A, are all real.

The energy of a graph G is defined to be

n

£(g) = Ew- dH)
i=i

If the characteristic polynomial cf G is as in (5.1.1), then the energy of G is
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Chapter 5 On the energy of unicyclic graphs

given by the Coulson integral formula (see [26, 29]):
2/ i iy-t I'l I \

1 dx
xn-tJJ*ln

fn/21 \ / [n/2l

Y1 {-l)ja2jX2j j + ^{-l)ja2j+lX23+13-0 / V 3=0

(5.1.3)

For an n-vertex graph G let bt = bt(G) = |aj(G)|, i = 0,1,... , n, where Oj 

are the coefficients of the characteristic polynomial of G, as in (5.1.1). Note that 

bo(G) — 1, bi(G) = 0 and b2{G) is the number of edges of G. If G is bipartite, 

then for k > 0, b2k+i = 0. Let m(G, k) denote the number of fc-matchings of G. 

If G is acyclic, then for k > 0, b2k = m(G, k) = (—l)fca2fc. It is both convenient 

and consistent to define m(G, k) = 0 and bk(G) = 0 for k < 0.

Lemma 5.1.1. [27] If G is a unicyclic graph with a circuit of size l, then for all 

k > 0, (-1 )ka2k > 0. Further, (-l)fca.2fc+i > (resp. <) 0 if l = 2r + 1 and r is 

odd (resp. even).

If G is a unicyclic graph, then by means of Lemma 5.1.1, formula (5.1.3) 

reduces to

Thus, in case of unicyclic graphs E(G) is a monotonieally increasing function of 

h{G),i = 1,2,...,n. Consequently, if G and H are graphs with at most one 

circuit such that

bt(G) > bi(H) (5X5)

holds for all i > 0, then

E{G) > E(H). (5X6)
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Section 5.2 Energy of unicyclic graphs with fii = 2

Equality in (5.1.6) is attained only if (5.1.5) is an equality for alH > 0. This fact 

provides us a way of comparing the energies of graphs in the class of unicyclic 

graph order n and the quasiordering is thus introduced. If relations (5.1.5) holds 

for all i, then we write G y H ox H -< G. If G y H but not H y G, then 

we write G y H. With this quasiordering, the above result can be restated as 

follows:

Lemma 5.1.2. Let G and H be unicyclic graphs. Then G y H implies E{G) > 

E(H), and Gy H implies E(G) > E(H).

5.2 Energy of unicyclic graphs with Pi = 2

Figure 5.1: The graphs when Pi = 2 

Theorem 5.2.1. Ga(l) -< G3(2) -<G3 ([^j) •
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Chapter 5 On the energy of unicyclic graphs

Proof. We have

oziGaik)) = -n,

03(^3 (k)) = —2,

^(Gsik)) = k(n ~ k — 2) + n — k — 3.

and

at(Gs(k)) = 0, for all i > 5 

f(k) = a4(G3(fc)) = k(n -k — 2) + n — k-Z,

f(k) = n-k-2-k-l

- n — 2k — 3 > 0, for all k < —-—.
(J

Thus f(k) is an increasing function of k and takes maximum value when k = 

Therefore by Lemma 5.1.2, the result follows. ■

Theorem 5.2.2. G4(l) -< G4(2) G4 ([*£*]) •

Proof. We have

a2(G4{k)) = -n,

a4(G4{k)) = —2 + k(n — k — 2) + 2(n — k — 3)

= k(n - k — 2) + 2(n - k — 4).

and di(G4(k)) = 0, for other value of i. Now

f(k) = b4(G4(k))

= |04(G4(*))|

= k(n — k — 2) + 2(n — k — 4),
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Section 5.3 Energy of unicyclic graphs with 0i = 3

f(k) = —k + n — k — 2 — 2

= n — 2k — 4 > 0, for all k < n — 4

Thus f(k) is an increasing function of k and takes maximum value when k

Thus by Lemma 5.1.2, the result follows.

5.3 Energy of unicyclic graphs with /?i = 3

If Pi{G) = 3, then G is one of the form as shown in Figure 5.2.

Theorem 5.3.1. G3(l,n — 5,1) ■< Gs(k,l,m) for all k,l,m> 1 and k + l + 

m + 3 = n.
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Chapter 5 On the energy of unieyclic graphs

Proof. We have

b2(G3(k,l,m)) 

h(Ga(k)) 

h(G3(k,l,m))

h (G3(k,l,m))

n,

2,

\a4{G3(k,l,m))\

k(l + m + 1) + (l + m) + lm,

\a6(Ga(kJ,m))\

him.

Let k,l,m and n be positive integers with k,l,m < n — 5 and k + l + m = n — 3 

and at least one of k and 1 is greater than or equal to 2 without loss generality 

assume that k = 1 and l > 2 and k + l + m = n — 3 l + m = n — 4. Now we show 

that a,4(Gz(l,n—5,1)) < a,4(G3(k,l,m)) and as(C?3(l» n—5,1)) < a%(G3(k,l,m)). 

If possible let

a4(G3(l,n — 5,1)) < aA(G3(k,l,m))

=> (m + 2) + (m + 1) + m > (l + m + 1) + (m + l) + lm 

=» m + 2 > 21 + lm 

=$■ 1 > l

Which is a contradiction to l > 2. ■

Similarly we can prove that ae(G3(l,n - 5,1)) < a6(Gz(k, l,m)).

Theorem 5.3.2. G3(l,n - 5,1) -< G3(2, n — 7,2) -< ... -< G3(p,n -2p — 3,p), 

where p = pjp].
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Section 5.3 Energy of unicyclic graphs with /3i = 3

Proof.We have

a4(G3(k,n — 2k — 3,k)) = k[n — k — 2) + n — k — 3 + k(n — 2k — 3), 

n — 2k — 3, k)) = fes(n — 2k — 3).

Both these integer valued functions are increasing in 1 < A: < and have 

maximum value if k = [pp] • Thus the result follows. g

Theorem 5.3.3. Let G*(k,l,l) be the unicyclic graph as shown in Figure 5.2, 

then

G&1,l,1,1) *...*(% ( n — 5 
3

,1,1
)•

Prof: We have

b2(Gt(k,l,m)) =

h (G5(*)) =

bA{Gt(k,l,m)) =

b6(Gt(k,l,m)) =

n,

2,

|a4(Gjj(M.»w})l

&(n — A: — 2) -h 2(?7Z + 1) + (/ + m + 1) + l(m + 1) + rn, 

\as{Gl{k,l,m))\

k(l + l)(m + 1) + km, + l(m + 1 ) + m.

Therefore,

b4(Gl(k, l, l)) = k(n -k-2) + 2 + n-k-5 + n-k-4 + n-k-5 

+\{n-k-5)2.
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Chapter 5 On the energy of unieyclic graphs

And hence

b4(Gl(k, 1,1)) = (n — k — 2) — k — 1 — 1 — 1 — - (n — k — 5) 
= n — 2k — 5 — 1 — ^ (n — k — 5)

Z
1 3, 7

= -n — -k — -2 2 2

> 0, for all k < n — 7

Thus bi(G*3(k, l, l)) is an increasing function of k and attains maximum value at

k = pyfi].

b6(G*3(k,l,l)) = k(l + l)2 + kl + l(l + l) + l

k[j-(n - k - 5) + l]2 + 2&[|(n — /c — 5)] + 
z z

- k ~ 5)(^(« - k - 5) + 1) + i(n - k - 5),

b’6(Gl(k,l,l)) = [^(n — fc — 5) + l]2 + 2k[^(n — k — 5) + 1]( +

\{n - k - 5) - ifc + (~)[|(n - k - 5) + 1] +

— ^(n — fc - 3) + 2fc(-^)(n/c - 3) + i(n — k —5) — 

\k ~ \{n - k - 3) - ^(n - k - 5) - ^

= ^(3&2 — k(4n — 10) + n2 — 6n + 5)

> 0 when k < -(2n — 5 — Vn2 — 2n + 10).
u

Therefore &6 is an increasing function of k for 1 < k < Thus the result

follows. ' ■

Similarly we have the following theorems.
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Theorem 5.3.4. GS(Z, 1, l) -< G3{1,1, Z) G3 (Z, , 0 .

Theorem 5.3.5. G4(0, Z, Z) -< G4(l, I, Z) X ... -< G4 ([Sf5] , Z, Z).

Proof. We have

b2(G4(k,l,m)) = n,

b4(G4(k,l,m)) — k(l + m + 2) + (l + m + l) + (l + l) + lm + m, 

h(G4,(k, l, m)) = fcra(Z +1) + Zm.

Now

b^iGiik, l, l)) = fc(21 + 2) + (2Z + 1) + {l + 1) + Z2 +1,

h(G4{k,l,l)) = kl{l + l) + lk.

Both are increasing function of k on 0 < k < f2^]. Thus the result follows, g 

Similarly we have the following proposition.

Theorem 5.3.6. G4(Z,0,Z) X G4(Z, 1,Z) G4 (Z, [^] ,Z).

Theorem 5.3.7. G4(0, Z, Z) -< G4(l, Z, Z) G4 ([^], Z, Z).
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Proof. We have 

b2(G4(k,l,m)) = n,

b4(G4(k, l, m)) = k(l + m + 3) + 2(1 + m 4- 2) + 2 m + lm,

be(G4(k, l, m)) = km(l + 2) + 2(1 + 1 )ra,

b4(G4(k,l,l)) = k(2l + 3) + 2(21 + 2) + 21 + l2

= k(n — k — 2) + 2 (n — k — 3) + (n — k — 5) + j(n — fc — 5)2,

b4(G4(k,l,l)) = -fc + n-fc-2-2-l-i(n-A;-5)

— 7i(n — 5 — 3&) > 0, for all2 o
i

Therefore b4(G4(k, l, l)) is an increasing function of A; in 0 < k < [pp].

be(G4(k,l,l)) = Asi(J + 2) + 2(1 + 1)1
= k[±(n - k - l)][|(n - k - 5)] + 2[\(n - k - 3)][|(« ~ k - 5)] 

- k(n — k — l)(n — k — 5) + 2 (n — k — 3 )(n — k — 5)),

b'6(G4(k,l,l)) = \(Sk2 ~Akn +Ilk+ n2-5n +21)

> 0, for all As < - 11 - V4n2 - 28n - 108).
6

Therefore b^(G4(k, l, l)) is an increasing function of k in 0 < k < [~]. ■

Similarly we have the following theorems.

Theorem 5.3.8. G4(l,0,l) + G4(l, l,l) + ... + G4 (l, [^],l) .

Theorem 5.3.9. G4(l, l, 0) -< G4(l, l, 1) G4 (l, l, [pp]).

Theorem 5.3.10. If G$(k,n — k — 5) is a unicyclic graph as shown in Figure 5.2 

then G6(0,n - 5) -< G5(l,n - 6) G8 ([^] ,n - 5 - [*=*]).
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Proof. We have 

b2(Gs(k, n — k — 5)) = n,

b4{Gs{k, n — k — 5)) = fan — k — 2) + 2 + (n — k — 3) + (n — k — 4) +

(n — k — 5),

fa(G5(k,n-k-5)) = 2,

bs(G5(k, n — k — 5)) = 2 k(n — k — 5) + (n — k — 5).

Since b4(G5(k,n - k - 5)), b6(G5(k, n - k - 5)) are increasing function of k in 

0 < k < [^]. Hence the result follows. ■

Theorem 5.3.11. IfGe(k,n — k — 6) is a unicyclic graph as shown in Figure 5.2 

then G6(0,n- 6) -< (?6(l,n - 7) G6 ([^] ,n - 6 - [Sj*]).

Proof. We have

b2(Ge(k, n — k —6)) = n,

fa(G6(k, n-k — 6)) = fan — k — 2) + 2(n - k - 3) + (n — k — 4) + (n — k - 5), 

b6(Gfak,n-k-Q)) = Sfan - k - 6) + 3(n - k - 6).

Since b4(G6(k, n-k - 6)) and b6(Ge(k, n-k- 6)) are increasing function of A; in 

0 < fc < [“]. Hence the result follows. ■
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Chapter 6

On the distance spectral radius of graphs

In this chapter we study the distance spectral radius of graphs. In section 2, of 

this chapter we give a special type of operation on a class of simple graphs in 

order to increase its distance spectral radius.

Trees are very common in the theory and applications of combinatorics. In 

section 3, we have determined the graphs with maximal and minimal distance 

spectral radius in the class of tree like graphs.

6.1 Introduction

The distance between two vertices u, v G V is denoted by duv and is defined as 

the length of a shortest path between u and v in G. The distance matrix of G 

is denoted by D(G) and is defined by D(G) — (duv)UjVGv Since D(G) is a real 

symmetric matrix, all its eigenvalues are real. The distance spectral radius p(G) of 

G is the largest eigenvalue of its distance matrix D(G). Since D(G) is irreducible, 

by the Perron-Frobenius Theorem, the eigenvalue p(G) is simple, and there exists 

a unique (up to multiples) positive eigenvector corresponding to p(G). The unique 

normalized eigenvector corresponding to p(G) is referred as the Perron vector of
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Section 6.2 Operating a graph to increase the distance spectral radius

D(G).

Let G be a connected graph. Let deg(u) (or degG(^)) denote the degree of 

the vertex v in G. A pendant path of G is a walk vQvi ...vs(s > 1) such that 

the vertices v0,Vi,... ,vs are distinct, deg(u0) > 2, deg(t>s) = 1, and deg(ui) = 2, 

whenever 0 < i < s. And Vo, s are called the root and the length of the pendant 

path, respectively.

Let x(G) — (xi,x-2, ■ ■ ■ , xnY be an eigenvector of D(G) corresponding to p(G). 

Then

p(G)xi = ^2 &jxJ• (6.1.1)
vj eV(G)

6.2 Operating a graph to increase the distance 

spectral radius

Here we give a graph transformation which will increase the distance spectral 

radius for a special class of simple graphs.

Here
k + 1 = u 
k + 2 = c 
k + Z — v

Gk.l G'

Figure 6.1: The graphs Gk,i and G' in Lemma 6.2.1
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Chapter 6 On the distance spectral radius of graphs

Lemma 6.2.1. Let u and v be two non adjacent vertices of a connected graph G 

such that c E Nq(u) D Ng(v) and all other vertices of G are equidistant from u 

and v. For positive integers k and l, let Gk,i denote the graph obtained from G by 

adding paths of length k at u and length l at v. Let m € Nq(u) and n E Nq(v) 

and G' = Gk,i - {(u,m),(v,n)} + {(m,c), (n,c)}. Then pi(G') > pi(Gk,i)•

Proof. We label the vertices of Gk,u G' as in Figure 6.1. We partition V(Gk,i) 

into Au{A; + 2}u{fc + 3}U.BUC, where A = {1,2,...,fc + l}; i? = {&+4,... ,1 + 

k + 3}; C = {j\dist(j, k + 1) = dist(j, k + 3)}.

When we pass from Gk,i to Gf, the distances within A U {k + 2} U {k + 3} U B 

and within C are unchanged; the distances between A and C, {k+3} and C 

are increased by 1; the distances between {k+2} and C is decreased by 1; the 

distances between B and C is increased by 1.

If the distance matrices are partitioned according to A, {k+2}, {k+3}, B and 

C, then their difference is

£>((/) - D(Gk,i) =

0 0 0 0 eA{ecy
0 0 0 0 -(ecy
0 0 0 0 {ecy
0 0 0 0 eB(ecy

ec(eAy -ec ec edes)1 0

where e* = (1,..., 1)* and i = A,B, C.

Let x = (xi,xny be a positive eigenvector corresponding to pi(Gk,i)- Then 

we have

i(pi(G')-ft(Gw)) > \x\D(d)-D(Gkt))x

= *] Xj + ] Xj + Xk+3 — xk+2) ^ ^ xj [6.2.1]
jeA jeB jec
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Section 6.3Operating a graph to increase the distance spectral radius 

By (6.1.1), we have

Pi(Gk,i)xk+i = kxi + (k~ l)x2 + ...+a;fc + xk+2 + 2xfc+3

+ ... + (l + 2)xi+k+a + J2d(k + hj)xj (6-2.2)
jec

Pl(Gk,l)Xk+2 = (k + l)x\ + kX2 + ■ ■ ■ + 2Xk + Xk+l + Xk+3

+2£fc+4 + ... + (/ + l)xi+k+3 + E + 2,j)x3 (6.2.3)
jec

Pi(Gk,i)%k+3 = (k + 2)x\ + (k +1)2:2 + . • • + + 2xk+i + Xk+2

+£fc+4 + • •. + lXi+k+3 + J2d(k + Z,j)Xj (62A)
jec

Now (6.2.2)+(6.2.4)-(6.2.3) gives

Pl(Gk,l)(Xk+l + Xk+3 — Xk+2) — (k + l)2;i + kX2 + • • • + Xk+l + 22:^+2 + Xk+3

+... + (l + l)2:j+fc+3 + ^2(d(k + 1, j)
jec

+d(k + 3, j) - d(k + 2, j))Xj > 0 ffrZS)

Since pi > 0, therefore by (6.2.5), we have

(2:/;+! 2^+3 Xk+2) 0 (6.2.6)

Using (6.2.6) in (6.2.1) we get pi(G') > pi(Gk,i)•



Chapter 6 On the distance spectral radius of graphs

6.3 On the distance spectral radius of tree like 

graphs

Definition 6.3.1. Let T be a tree on vertices 1,..., n and G be any graph of order 

m. Then TG is the graph obtained by taking n copies ofG, and if {i,j} G E(T), 

then every vertex in the ith copy of G is made adjacent to its corresponding vertex 

in the jth copy of G.

Observe that the order of TG is nm, and when G — Ki, we have that T° = T. 

We call the tree T the parent of T°.

Example 6.3.2. Here we consider T = P3, the path on 3 vertices and G = C3, 

the cycle on 3 vertices. The graph P33 is shown in Figure 6.2.

»-*-* v Cvj
c3

Pz3

Figure 6.2: The graph PGz

Let 7g be the class containing all TG, where T is a tree of order n and G is 

a graph The graphs PG, SG G Tg, are called a G-comb and a G-bell, respectively 

[ see Figure 6.3]. By length, centre and end vertex of a G-comb we mean the 

length, centre and end vertex of its underlying parent path, respectively.
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Section 6.3 On the distance spectral radius of tree like graphs

Definition 6.3.3. A graph G is said to be obtained from a graph H by attaching 

a graph K to a vertex subset V\ ofV(H), if G — V\ has a component K.

Figure 6.3: The graphs P® and S„

6.3.1 The transformation

Here we give a graph transformation in the form of lemmas which will be useful 

to derive our main results.

Lemma 6.3.4. If G{ is the graph obtained form P®° by attaching a graph G* to 

a subset of the vertex set of the i^1 copy of Go, in Pj?°, then p(Gi_i) > p(Gt) for 

alll<i< |JJ.

Proof. Let the vertices of G^kj be labeled as in Figure 6.4. Suppose k is even 

and Pk = vQvi... v2d+i- Let Vt = V^G*) = {ic,\ v%,w™} denote the vertex 

set corresponding to the ith copy of Go, where w\ = for 0 < i < 2d 4-1. Let

= ^LfJ ~ ^uevd,veNa.(u)uv + ^2uevd^uv&NG.(u)uv’ 311(1 % tlie Perron 

vector of D(G^j). Suppose Xv denotes the component of X corresponding to
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Chapter 6 On the distance spectral radius of graphs

Figure 6.4: The graphs G|jj and in Lemma 6.3.4

the vertex v e Let us denote p{G^kyj = pi and p(G^|j_i) = P2■ Then from 

G|^|j to we have

> 5X‘(D(<W.) - D(G^))X

veG*
E E x-

.wuSj’v. »6u;':;o k .

If V, > S.eutdn X"' then b-v (6-31) we get,

(HD

P2 > Pi-
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Section 6.3 On the distance spectral radius of tree like graphs

Assume that XlveLf-d1 K — ^eut:,,1 v, Then using (6.1.1) we get,

Pi (XVd — XVd+1)

= E x»- EK veuto^ veG'

< -e^-e*^0
vaVd v£G*

=$■ Xyj < Xyd+l .

(6.3.3)

Similarly we get,

< X<t, (US
where d < i < 2d + 1, and 1 < j < m.

Again by (6.1.1), when 2 < i < d, we have

Pi(XVd_t XVd+i+1) Pi(XVd_t+1 XVd+i) 

2 E E *.yeif^v, ve{J^0 V, .

i—1
*E

k=0
y (x, - Xi )L—J V Ud+fc+l wd-k) 
.3=1

- e *-•
vevd

(6.3L5)

We now prove that X 3 < X, , for 1 < i < d, and 1 < j < ra, by induction
Wd—i “'d+t+l

on i.

If i = 1, then

Pii.Xwld_1 ^wd+2^ Pi {Xwi A„i+i) pi(XVd_] XVi+2) p\(XVd XVd+^)

E E *
fiesta v. ^euto1 K

<0.
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Chapter 6 On the distance spectral radius of graphs

Therefore, — Xwi+2 have the same sign as Xwi — Xvi+i. Hence by (6.3.4), 

Xu,i_i < Xwi+2. Similarly we can prove Xw, ^ < X^ , where 2 < j < m.

For i> 2, by induction hypothesis we have,

X^, < X, , for 0 < k < i — 1, and 1 < j < m.

Therefore,
l—l

-2Efc=o Lj=i
Thus by (6.3.5) and induction hypothesis, we have

Xv < 0.

Pi(xwld_t ~ xw\+t+1) ~ Pi(^i_l+1 “ *wJ+.)

= p\{XVdx — ^Vd+,+1) — Pi{XVi_t+1 — XVd+t)

< 0

— ^i+,+i) — Xv>d+t) <

=> xwii - x„.+i+i < o. (HD
Similarly we can prove that

X,
Wd-

X.
Vd+,+1 < 0,

for 1 < i < d, and 2 < j < m. Therefore we have,

E *.< E *»< E*eU£oV, »ell ,=2+2K ueU^J1 H

a contradiction to our assumption XXeU2^1 v, Xv — S-ueu^o K Xv- Hence

E xv> E
veU^v, wel&Jv, 

and (6.3.2) holds, i.e. p% > p\.
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Section 6.3 On the distance spectral radius of tree like graphs

Let Y be a Perron vector of Then we must have IC-ueU2^1 v, Yy •>

^elfco1 K Yv’ 0tilerwise>

1

1

(Pi ~ Pi)

> ^(D(Gm) - DiG^Y

ueG* E Y-~ E y«veUto1 v, ^eUS1 v, .
> 0

=$■ Pi > P2, a contradiction to (6.3.2).

Let Gl|j_2 — G^|j_1 ]CueVd_i,t>ewG.(u)uv + EneKj-2,«6ffG.(«)uv- ^ P'A denote 

p(GL|j_2), then

Ey»»€G* E *•- E *"eLgSIjV, veUtZo ^4-2,

>0

P3 > Pi-

Repeating the above procedure, we can get a sequence of graphs 

G|jj,G|jj_1,G!1jj_2, ...,Gt, where 2 < t < d+ 1,

such that

P(G[fj) < pC^Ltj—i) < • • < p(Gt).

If we take P = U0U1... vj, then also proceeding as above we can get the same 

conclusion. ■
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Chapter 6 On the distance spectral radius of graphs

6.3.2 Graphs with extremal distance spectral radius in Tg

Theorem 6.3.5. The G-bell uniquely minimizes the distance spectral radius 

in Tg-

Figure 6.5: The graphs G' and G" in Theorem 6.3.5

Proof. If the parent tree has order at most 3, then Tg = {Sf} or Tg = {Sf} 

or Tg = {S$}. So the discussion is trivial in this case. Assume that the parent 

tree has order at least 4. Let G' 6 Tg be a graph with minimal distance spectral 

radius. We claim that G' is a G-belL If not, then there exists one G-comb P3G' of 

length 2 as an induced subgraph of G', such that G' is obtained by attaching a 

graph G* at the vertex set of the first or the third copy of G in P® [Figure 6.5]. 

If hi is the vertex subset corresponding to the zth copy of the G-comb PG, where

1 < i < 3, and G" = G'~ £uev2,„6Jv0.(u) uv + J2uevuvzNG.(u)uv is a graPh in 7b, 

then by Lemma 6.3.4, we get p{G') < p(G"), a contradiction to the minimality 

of G'. ■

Theorem 6.3.6. The G-comb PG uniquely maximizes the distance spectral radius
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Section 6.3 On the distance spectral radius of tree like graphs

inTG.

Proof. Let G' be the graph in Tg with maximal distance spectral radius. If 

G' 7^ P®, then G' has an induced subgraph P[f for some k. Then by Lemma 6.3.4, 

we get another graph G" in Tg with larger distance spectral radius, which is a 

contradiction. Therefore, G' = P®. ■
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Chapter 7

Open Problems for further research

From the literature it is apparent that although the spectral properties of graphs 

have been investigated quite extensively, only the surface of this subject has been 

scratched so far. Many interesting problems are still open and following are some 

of them.

7.1 Adjacency Spectrum

1. The characterization of singular graphs by their graph theoretic properties 

is not solved. Although the singular bipartite graphs have been studied to 

some extent, the singularity of non-bipartite graphs has not been studied 

that much.

2. The problem of determining the graphs with maximal adjacency spectral 

radius has received much attention and has been studied extensively. But 

the similar problem regarding the minimal adjacency spectral radius has not 

been investigated as much. For example, following are some open problems 

in this direction.

(i) Determining the graphs with minimal adjacency spectral radius among
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Section 7.2 Distance Spectrum

all graphs with a given number of cut-vertices.

(ii) Determining the graphs with minimal adjacency spectral radius among 

all graphs with a given number of cut-edges.

(iii) Determining the graphs with minimal adjacency spectral radius among 

all graphs with a given vertex connectivity.

(iv) Determining the graphs with minimal adjacency spectral radius among 

all graphs with a given edge connectivity.

7.2 Distance Spectrum

The study of the spectral properties of the distance matrix of a graph is relatively 

new and is much more difficult than that of the adjacency matrix.

1. Some open extremal problems regarding the distance matrix are as follows.

(i) Determining the graphs with maximal distance spectral radius among 

all graphs with a given number of cut-vertices.

(ii) Determining the graphs with maximal distance spectral radius among 

all graphs with a given vertex connectivity.

(ii) Determining the graphs with maximal distance spectral radius among 

all graphs with a given number of cut-vertices and given matching.

2. Even much less is known about the spectrum of the distance matrix of a 

graph as a whole. In other words, the characterization of graphs by their 

distance spectrum is an open problem, which is much more difficult than 

the corresponding problem regarding the adjacency matrix of a graph.
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